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The presented work and results are part of the “LASIBAT - Laser-

based in-line sintering of adapted ceramic materials for the 

manufacturing of solid-state battery cells” project.

Motivation and Scientific Concept

The LASIBAT-project aims to develop an in-line manufacturing process for ceramic 

cathode and separator layers based on Li6.25Al0.25La3Zr2O12 (Al-LLZO) for all solid-state 

batteries (ASSB). By means of screen-printing roughly 20-30 µm thick layers are 

applied onto a titanium grade 2 substrate. The laser-based sintering process [1, 2] is 

designed to deposit energy directly into the ceramic particles (see Fig. 1). As laser 

radiation has a narrow band width (here 440 ± 3.1 nm), the absorptance must be 

adjusted accordingly. CuO is a suitable electrically nonconductive additive [3] with 

suitable optical properties. Adding CuO allows heating rates of > 1000 K/s. As high 

lithium-loss at elevated temperatures and sufficient densification are the main 

development challenges in the project, Li-excess of 20 mol-% in the form of LiOH is 

added to prevent LLZO decomposition.

Scanning Electron Microscopy

The pristine LLZO particles (d50 = ~700 nm) are sharp-edged and densely packed (fig. 

3 left). After laser processing, the particles have rounded edges, and a fine and dense 

grain structure has been formed (fig. 3 right).

Fig. 3: Left: Unprocessed screen-printed and oven debinded LLZO-layer.

Right: Laser-sintered LLZO-layer on titanium grade 2 substrate.

 Laser processing @ 0.25 s interaction time and 1400 °C pyrometer temperature

 Highly densified layer and distinct grain formation

 Residual pores and (most likely) thermally induced cracks in LLZO-layer

Fig. 3: XRD spectrum from processed LLZO-layer. 

 LiOH as Li-excess for stabilization 

of c-LLZO phase

 Observed secondary phases 

La2Zr2O7 [2,2,2] @ 28.6 ° and 

Li2ZrO3 [1,1,0] @ 20.3 ° (more 

possible)
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Fig. 1: Absorptance of LLZO layers with varying CuO content.

 Absorptance for 25 µm thick pure 

Al-LLZO layer ~5 % in optical and 

NIR spectral range

 CuO as electrically nonconductive 

laser additive

 Increase of absorptance @ 

440 nm to 40 %, 55 % and 60 %, 

for 1, 2 and 3 wt.-% CuO as 

additive in screen-printing paste

Optical properties

Fig. 2 shows the absorptance for LLZO layers of 25 µm thickness with different 

fractions of CuO from 250-2500 nm. 

Fig. 1: Schematic concept of energy deposition in particulate LLZO layer and experimental setup. Regulation of 

laser power by co-axially integrated pyrometer.
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XRD phase analysis indicates the conservation of cubic LLZO as well as the formation 

of La2Zr2O7 and  Li2ZrO3 (fig. 4).

Conclusion and Outlook

The results demonstrate the feasibility of a first scaled-up in-line capable laser-based 

sintering process for LLZO with area rates of 240 mm²/s. Further trials to determine Li-

ion conductivity, sintering depth and adhesion are pending.

Fig. 3: X-ray diffractogram of laser-sintered LLZO Layer on Ti-substrate.


