GoFIB: Fabrication of Ga₂O₃ **Polymorphs with Ion Beams**

Gregor Hlawacek¹, Flyura Djurabekova², Andrej Kuznetsov³

1 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany 2 University of Helsinki, Helsinki, Finland 3 University of Oslo. Oslo, Norway * corresponding author email: g.hlawacek@hzdr.de

HELMHOLTZ ZENTRUM **Research Council DRESDEN** ROSSENDORF

Introduction

Summary

M-ERA.NET

The Research Council of Norway

STAATSMINISTERIUM

FÜR WISSENSCHAF

KULTUR UND TOURISMUS

+Context:

+Polymorphism:

+Objective:

Importance of Ga₂O₃ in power electronics, sensors, and optoelectronics. Ga₂O₃ exists in multiple crystalline forms with distinct properties. Control phase transitions using ionbeam-induced disorder.

Key Takeaways:

 \bullet Ion beams enable precise phase control in Ga₂O₃.

of Finland

Freistaat SACHSEN

- $+\gamma/\beta$ heterostructures demonstrate high radiation tolerance.
- +Self-assembling and nanopatterning open pathways for novel polymorph device concepts. **Next Steps:**

+Expected Impact: New synthesis routes for Ga₂O₃-based materials and novel nano-structures.

- Advanced electrical characterization of polymorph interfaces.
- +Optimization of ion-beam structuring for industrial scalability.

Radiation tolerance, disorder, and phase transformation

- +Exceptionally high radiation tolerance of Ga_2O_3
- Mostly independent of ion type and energy
- +Results in polymorph conversion from monoclinic β -Ga₂O₃ to cubic defective spinel γ -Ga₂O₃
- +MD reveals that the phase transformation is stabilized by oxygen sublattice
- +Positron annihilation spectroscopy shows reduction of trapping sites (defects) during phase transformation

⁵⁸Ni⁺ ions for different fluences as indicated in the legend. The channeling spectrum of the unimplanted (β -virgin) sample is shown by a dashed line for a comparison. Spectra acquired for the random incidence of the He beam are shown too by thick lines.

veals that the oxygen subis exhibiting rapid cascade recrystallization into the original fcc stacking.

Jou No 0.475 - 0.470 -	1 2 3 4		1 1 1 9 10 11	$\begin{bmatrix} a_{1} \\ 80 \\ - \\ 0 \\ - \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	e Bulk γ-Ga ₂ O ₃ - Ga4 7 8 9 10 11				
Energy (keV)									
Fluence	S-Para	ameter	W-Parameter	Diffusion length	Defect Concentration				
$(Neon/cm^2)$	(Surface)	(Layer)	(Layer)	L+ (nm)	(cm^{-3})				
0	0.5213(3)	0.4653(2)	0.0490(1)	27.7(2)	1.81×10^{18}				
$3.5 imes 10^{14}$	0.4883(5)	0.4765(2)	0.0446(1)	8.3(5)	2.7×10^{19}				
$3.5 imes 10^{15}$	0.4990(8)	0.4801(1)	0.0449(1)	3.0(2)	2.1×10^{20}				
$3.5 imes 10^{16}$	0.5097(2)	0.4722(2)	0.0485(1)	39.4(4)	4.24×10^{17}				
7×10^{16}	0.5112(3)	0.4694(2)	0.0500(1)	32.8(3)	8.56×10^{17}				
3.5×10^{17}	0.5139(4)	0.4847(1)	0.0468(1)	9.6(2)	1.59×10^{19}				

Doppler Broadening Variable Energy Positron Annihilation Spectroscopy and Positron Annihilation Lifetime spectroscopy (PALS) results and resulting defect densities. The PALS measurements have been performed at the ELBE facility at HZDR.

Radiation tolerance of Ga2O3 and select standard semiconductors and previously known radiation hard materials. The relative disorder obtained from RBS/c vs. applied dpa is shown.

Vertical polymorph structuring

- +Dynamic defects annealing results in self-assembling of polymorph heterostructures
- +RBS\c, TEM and nanoFTIR results confirm multilayer structure +machine learned MD reveals atomic structure at the interface

In plane polymorph structuring

+Focused Ne ion beam irradiation allows lateral patterning +Feature size limited only by collision cascade

25 nm	10 nm	5 nm	1 nm	single line	500 nm
inimal achieva ature in a β-Ga pproximatly 20	ble γ -Ga ₂ O ₃ $_{2}O_{3}$ matrix is nm. Fabri-		pure Prim Prime Prim Prim Prim Prim Prim Prim Prim Prim		5 nm

cated using a 25 keV Ne (beam resolution ~2nm).

Two γ -Ga₂O₃ areas touching each other leaving a minimal β -Ga₂O₃ bridge behind. Fabricated using a 25 keV Ne (beam resolution ~2nm) and a design gap of 30 nm.

Selforganized fabrication of β/γ multilayer structures in Ga2O3. Temperature dependent RBS/C spectra revcealing the formation of $\gamma - \beta - \gamma - \beta$ multilayer structures at 350°C. The nano-FTIR absorption spectra map and the corresponding TEM image confirm the distribution of $\gamma - \beta - \gamma - \beta$ polymorphs in the cross-section. The right side show ML-MD results revealing the atomic configuration at the β/γ interfaces.

[1] A.Azarov, C.Bazioti, V.Venkatachalapathy, P.Vajeeston, E.Monakhov, and A.Kuznetsov, Disorder-Induced Ordering in Gallium Oxide Polymorphs. PRL, 128, 15704(2022)

References (2) A. Azarov, J. Garcia Fernandez, J. Zhao, F.Djurabekova, H.He, R.He, Ø.Prytz, L.Vines, U.Bektas, P.Chekhonin, N.Klingner, G.Hlawacek, and A.Kuznetsov, "Universal radiation tolerant semiconductor," Nat. Comm., 14, 4855 (2023) (3) A.Azarov, C.Radu, A.Galeckas, I.F.Mercioniu, A.Cernescu, V.Venkatachalapathy, E.Monakhov, F.Djurabekova, C.Ghica, J.Zhao, and A.Kuznetsov, Self-assembling of multilayered polymorphs with ion beams, Nano Lett. 25, 1637(2025)