

APRIL 1-2, 2025, DRESDEN, GERMANY

INNOVATIVE FULLERENOL - HYDROGELS BASED NANOMATERIALS FOR HEALTH DIAGNOSTIC AND CARE APPLICATIONS

Acronym: FULSENS-GEL Web site: https://www.fulsens-gel.ro/en/

Coordinator: National Institute for R&D in Chemistry & Petrochemistry – ICECHIM, Bucharest, Romania

Project director: Dr. ANA-MARIA GURBAN Duration: June 2022 – December 2024 (30 months) Total Requested Budget: 452.400 EURO

E-mail: ana-maria.gurban@icechim.ro

M-ERA.NET

NATIONAL INSTITUTE FOR RESEARCH AND DEVELOPMENT IN CHEMISTRY & PETROCHEMISTRY

DIRECTIONS

- ✤ BIOTECHNOLOGIES, BIORESOURCES AND BIOPRODUCTS FOR BIOECONOMY
- SMART POLYMERIC MATERIALS AND NANOMATERIALS
- * NEW AND EMERGING TECHNOLOGIES

- Is one of the major research entities in Romania, being involved in all fields of chemistry.
- Established in 1950 by the Decision of the Council of Ministers no. 604/1950 being oriented mainly on applied research for new products and technologies.

Applied research for the development of new products and technologies in:

- ✓ Capitalization of bioresources;
- ✓ Nanoscience and nanomaterials;
- Environmental protection and sustainable management of resources;
- Increasing the competitiveness of industrial products;
- Refurbishment and revitalization of the Romanian chemical and petrochemical industry;
- ✓ Recovery, recycling and recovery of by-products.

CONSORTIUM

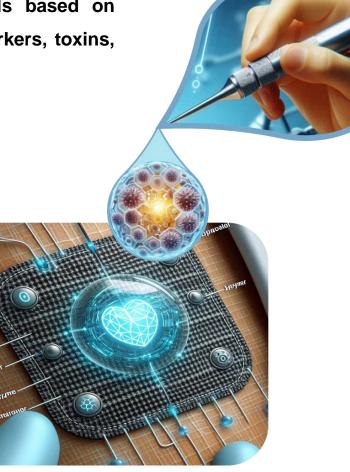
Partner 1: ICECHIM, Bucharest, Romania Dr. Ana-Maria GURBAN (<u>ana-maria.gurban@icechim.ro</u>)

Partner 2: Necmettin Erbakan University, Konya, Turcia Prof. Saniye SÖYLEMEZ (<u>saniyesoylemez@gmail.com</u>)

PARTNER 3: METROHM DropSens S.L., Asturias, Spain Dr. Pablo FANJUL BOLADO (pablo.fanjul@metrohm.com)

Partner 4: ChimGrup SRL, Bihor, Romania Eng. Mihai MITREA (mihai.mitrea@eeg.ro)

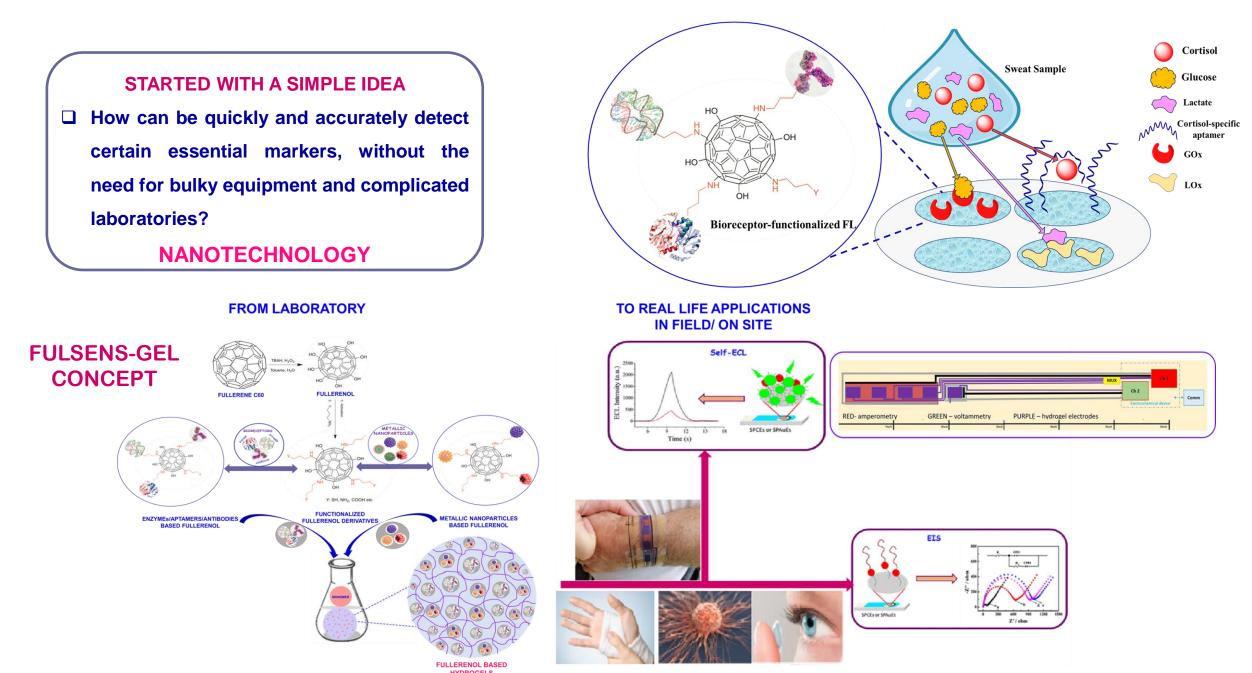
EEG ECO ENGINEERING GROUP



The FULSENS-GEL project consisted in the development of an *innovative nanomaterial,* based on combination of the elastic, flexible and resistant *crosslinked hydrated polymer network* with functional polyhydroxylated derivatives of fullerene, *Fullerenols (FL), resulting a new conductive hydrogel with tunable network structures, active surface and improved electrochemical, mechanical and optical properties for sensing applications.*

FULSENS-GEL project addresses the needs for *safety in healthcare, food industry, nutrition, agriculture and the environment,* through developing miniaturized bioanalytical tools based on innovative functional nanomaterials for the rapid and accurate determination of (bio)markers, toxins, drugs residues, pollutants, etc.

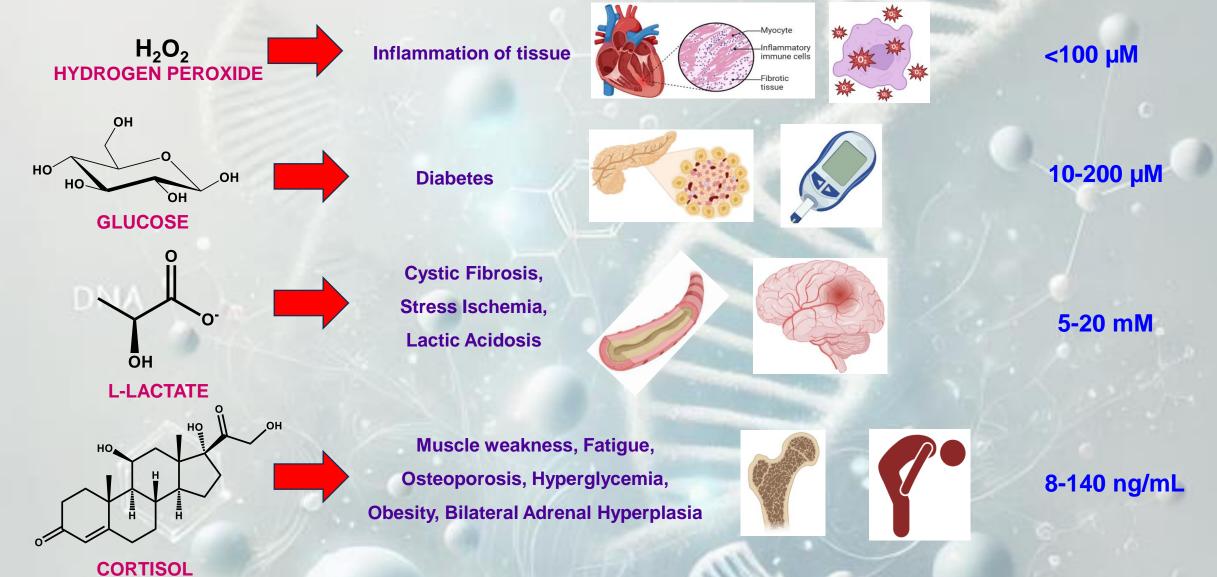
PROJECT OBJECTIVES


- To develop new Fullerenol Hydrogel nanomaterials with better functionality, mechanical, electrochemical and optical performances;
- To design and optimize (bio)sensitive FL-Hydrogels with higher stability, selectivity and sensitivity;
- To design and develop a highly sensitive, selective and flexible wearable multiplex patch, based on the novel material, for rapid and efficient screening of biological and physiological parameters (e.g. glucose, lactate, cortisol, chloride ions and pH);
- To evaluate and demonstrate the multiplex sensor patch performances for biophysiochemical analytes determination.

M-ERA.NET

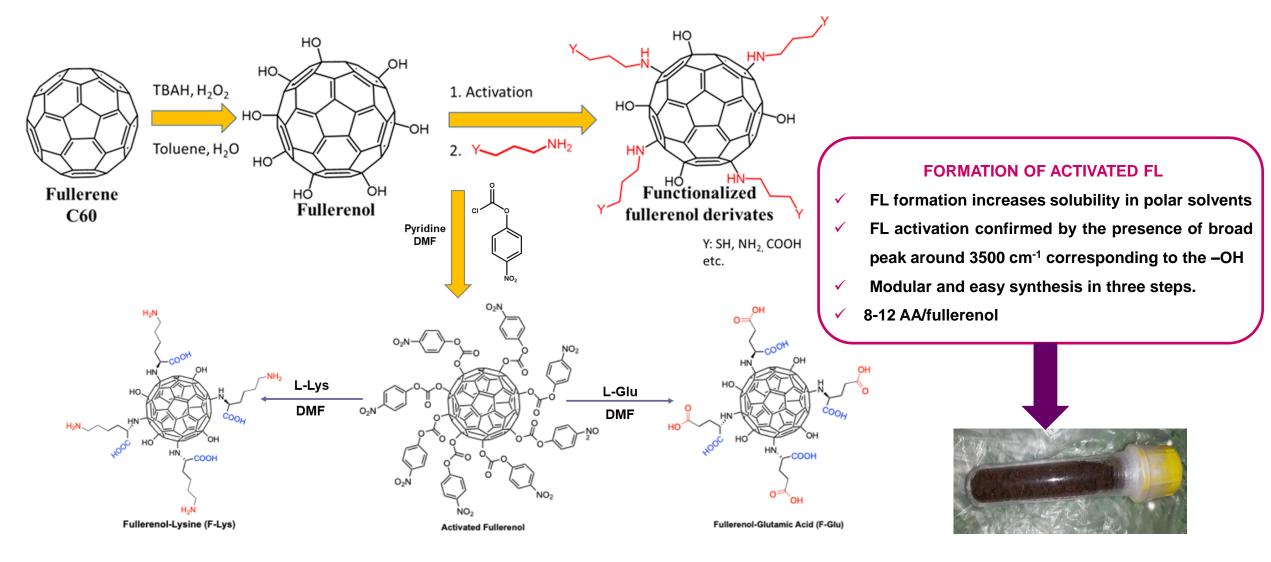
🔅 M-ERA.NET

FROM WHERE FULSENS-GEL STARTED

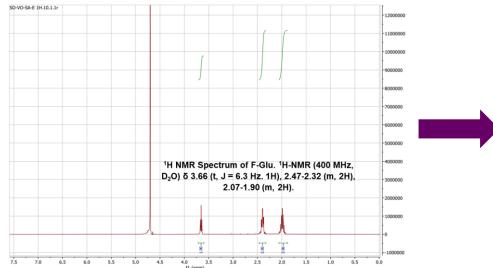


CLINICAL BIOMARKERS FROM SWEAT

RELATED HUMAN CONDITION MONITORING

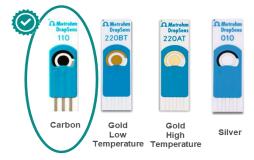

Relative Content in Sweat

SYNTHESIS OF NANOMATERIAL- FULLERENOL

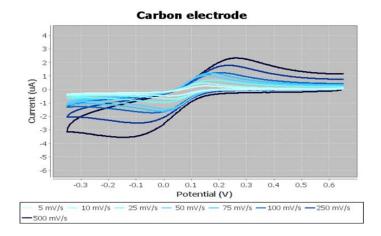

Hydroxylation of fullerenes in a mixture of NaOH, H₂O₂ and tetrabutyl ammonium hydroxide in toluene ► ACTIVATED FULLERENOL

🔅 M-ERA.NET

STRUCTURAL CHARACTERISATION OF FULLERENOL (FL)

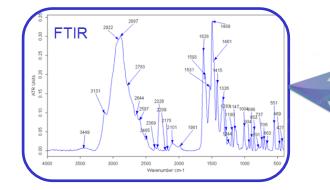

- > Synthesis of fullerenol starting from commercial fullerene C-60;
- > Characterization of FL using ¹H, ¹³C NMR and FTIR spectroscopy;
- Activation of FL confirmed by the presence of aromatic doublets at 6.9 and 8.1 ppm in ¹H NMR spectroscopy;

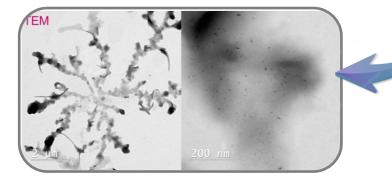
🗯 M-ERA.NET

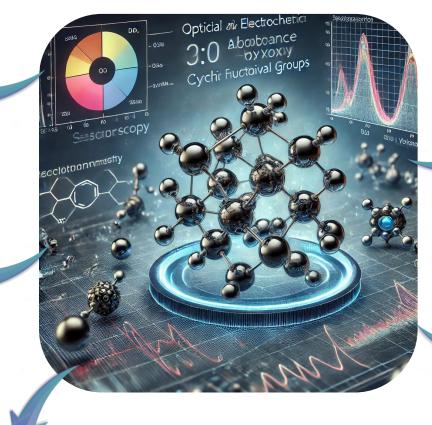

- > Degree of functionalization determined by elemental analysis;
- Synthesis of Lysine and Glutamic acid functionalized FL derivatives (FL-Lys and FL-Glu);
- > Overall yield synthesis of FL-Glu was 52% and for FL-Lys about 45%, respectively;
- > The degree of substitutions was 8 for FL-Glu and 9 for FL-Lys (calculated based on the
- integration value of internal standard -DMF in ¹H NMR spectra).

Metrohm SELECTION OF THE ELECTRODE MATERIAL

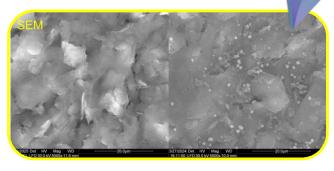
Surface material selection




Electrode	Electroactive area
Carbon	0.9868cm ²
Gold High temperature	0.0067 cm ²
Gold Low temperature	0.0300 cm ²
Silver	



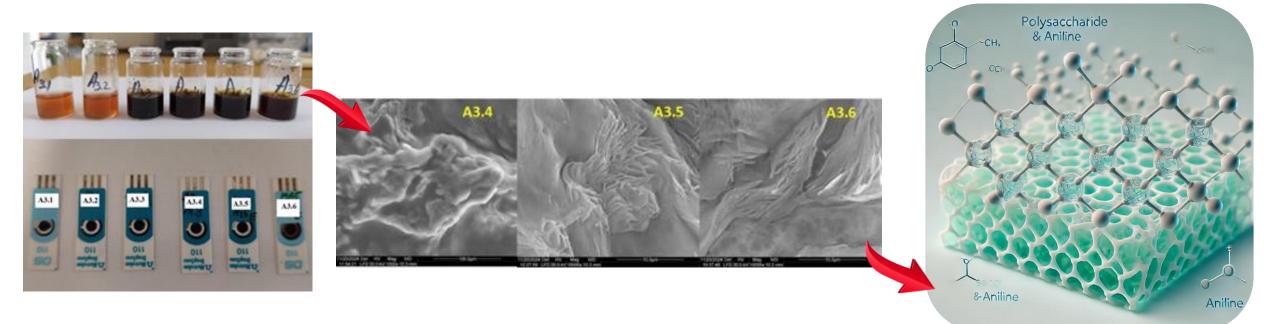
OPTO-ELECTROCHEMICAL CHARACTERISATION OF FULLERENOL BASED SPEs



ECL characterization of FL

M-ERA.NET

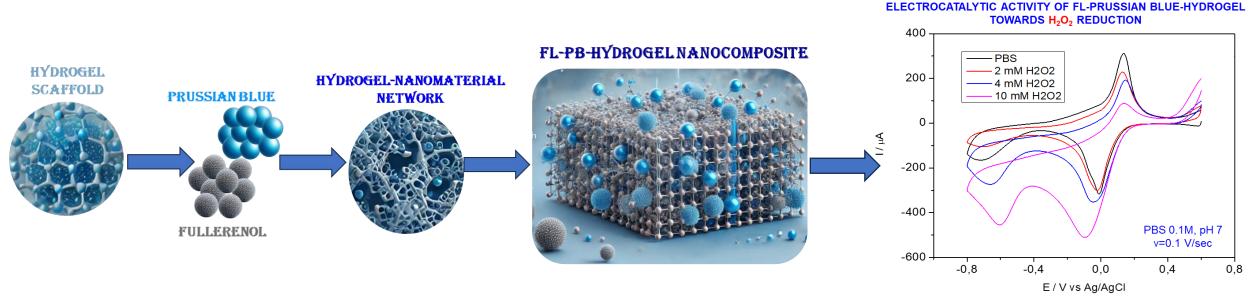
FULLERENOL – POLYHYDROXYLATED FULLERENE


- High solubility in water and polar solvents;
- Facilitates the electron transfer between the analyte and the sensor surface
- Large active surface area of FL increases the sensitivity for analyte detection
- Electron acceptor > suitable for sensing applications.

SYNTHESIS AND CHARACTERIZATION OF HYDROGEL BASED BIOPOLYMER

In-situ polymerization of aniline in the microporous biopolymer support **BIOPOLYMER-POLYANILINE COMPOSITE FILMS**

🕮 M-ERA.NET



HYDROGELS - crosslinked hydrophilic polymer

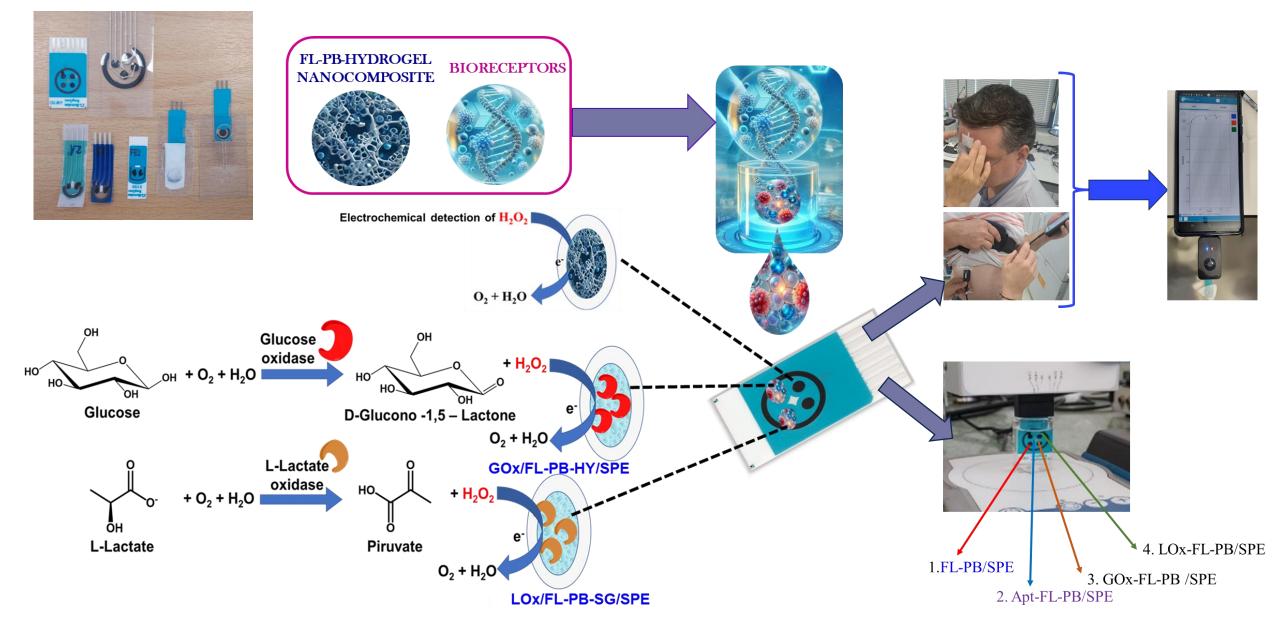
- Higher water content provides biocatalysis conditions close to homogenous catalysis;
- Provides selective permeability.
- Allows encapsulation of nanomaterials, bioreceptors, drugs, etc.
- Polysaccharide-polyaniline biopolymer based composites represent stable film-forming materials.

DEVELOPMENT OF INNOVATIVE FULLERENOL-HYDROGEL BASED SENSORS

AMPEROMETRIC DETECTION OF H₂O₂ USING NANOCOMPOSITE BASED SENSORS

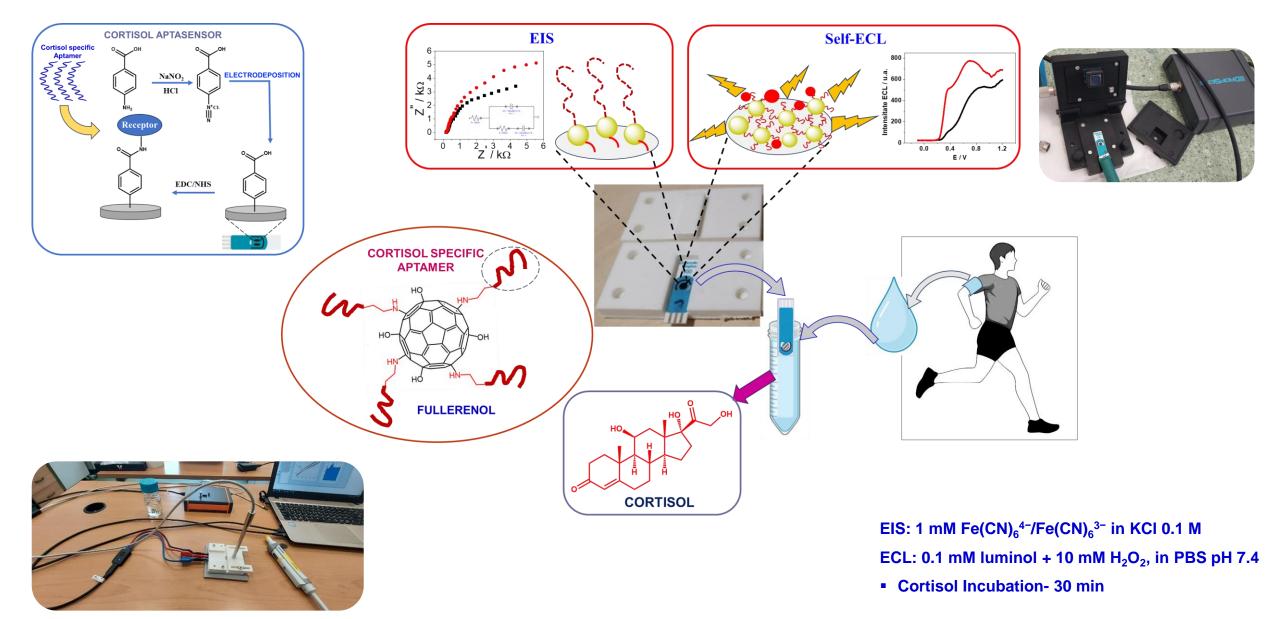
SPE	Linear range (µM)	Specific sensitivity (mA·M ⁻¹ ·cm ⁻²)	Detection limit (µM)
SWCNT-PtNP	71-1890	137.58	2.5
FL-PB	8-243	57.14	6.3
FL-PB-HG	8-833	177.86	2

ADVANTAGES OF FL-PB-HYDROGEL NANOCOMPOSITE

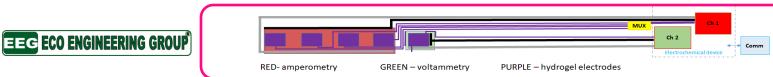

M-ERA.NET

- ✓ Improved electrocatalytic properties for H₂O₂ detection;
- ✓ Synergistic effect of Fullerenol, Prussian Blue and Agarose-based Hydrogel;
- \checkmark Direct reduction of H₂O₂ at low potential values (0.04 V vs. Ag/AgCl);
- ✓ High sensitivity by facilitating the electron transfer between the analyte and SPE surface;
- High surface-to-volume ratio and high electric conductivity of the novel nanomaterials led to good analytical performances.

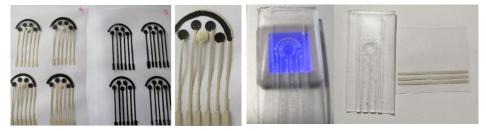
CLINICAL BIOMARKERS DETECTION



DEVELOPMENT OF OPTO-ELECTROCHEMICAL APTASENSOR BASED ON



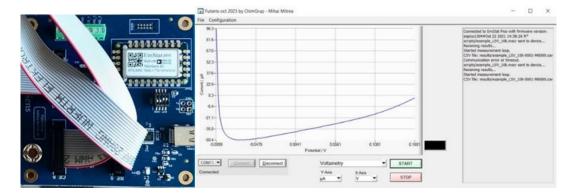
FULLERENOL FOR CORTISOL DETECTION



DESIGN AND DEVELOPMENT OF THE FLEXIBLE, WEARABLE FL-HYDROGELS MULTIPLEX PATCHES FOR RAPID AND EFFICIENT HEALTH STATUS SCREENING

INITIAL CONCEPT OF WEARABLE SENSOR DESIGNED BY CHIMGRUP

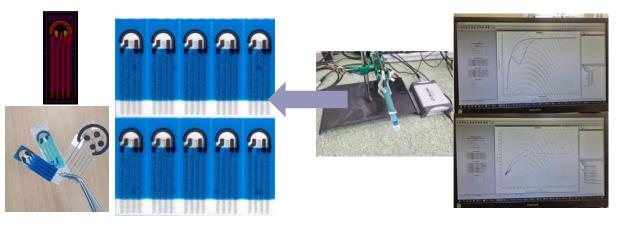
MULTI-WORKING SPEs SETUP



- Prototype sensor with 4 working electrodes (2D-print on PVC/paper)
- Prototyping elastomer mold for one WE
- Mold of microfluidic devices from PDMS (elastomer) 3D-PRINT
- Absorbent layer (textile, filter paper diffusion of 25-50 μL PBS)

INTEGRATION OF MICROFLUIDIC DEVICE CONTAINING SPE INTO A MINIATURIZED CONFIGURATION

16-CHANNEL MULTIPLEXER CONFIGURATION AND MEASUREMENT PANEL IN THE SOFTWARE APPLICATION


INITIAL DESIGN OF MICROFLUIDIC ELEMENTS

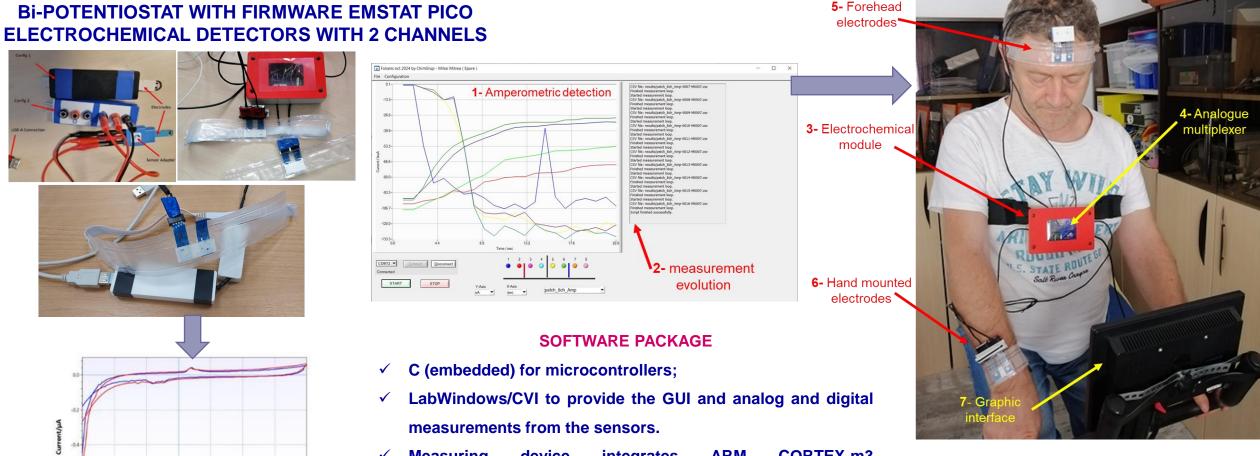
WHERA.NET DESIGN AND DEVELOPMENT OF THE FLEXIBLE, WEARABLE FL-HYDROGELS

MULTIPLEX PATCHES FOR RAPID AND EFFICIENT HEALTH STATUS SCREENING

FINAL OPTIMIZED CONFIGURATION OF MULTI-SENSING SPEs

WEARABLE PATCH CONFIGURATIONS FOR MEASURING WITH COMBINED 2WEs SETUP

INITIAL MEASUREMENTS ON 4 CHANNELS - SPORT CONFIGURATION CARRIED OUT WITH WEARABLE MULTISENSORS



M-ERA.NET DESIGN AND DEVELOPMENT OF FUNCTIONAL HARDWARE MODULES TO BE

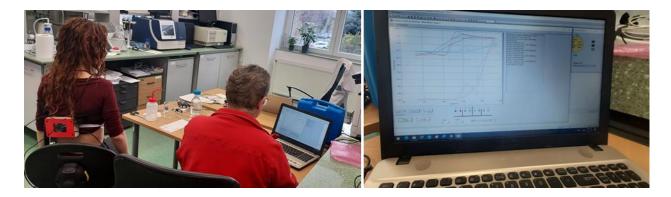
IMPLEMENTED INTO A MULTICHANNEL WEARABLE CONFIGURATION

 ✓ Measuring device integrates ARM CORTEX-m3 microcontrollers (Cypress-PSOC 5, ADuCM355-PICO, STM32F103) functionalized with embedded programs in Keil C allowing signal monitoring using platforms with low-cost.

CVI vs E Scan 1 CVI vs E Scan 1 (1)

SIGNALS ACQUIRED WITH BI-POTENTIOSTAT

EEG ECO ENGINEERING GROUP


0.0.

SOFTWARE DEVELOPMENT FOR MULTIPLE CONFIGURATIONS

EEG ECO ENGINEERING GROUP

- Cyclic Voltammetry technique on combined setup device
- Impedance technique on combined setup device
- Chronoamperometry on combined setup device
- Capable of sequentially measuring on up to 16 channels
- **Ready to implement calibration curves**

Fulsars oct 2024 by Chimling - Mihai Mitna (Epure

INFO_Fulsens_ Mihai Mitrea si Petru EPURE

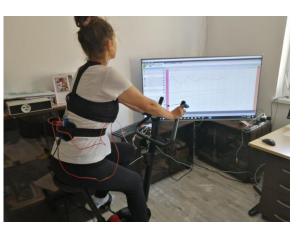
100.00 80.08

45.00

60.00 40.00

PULS

140.00) 160.00

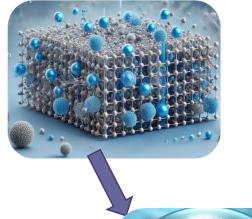

180.00

Calibration Curve Calibration 2 Spo

TOXIC

ADVANTAGES

- **FLEXIBILITY** \geq
- **OPEN TO DEVELOPMENT** \succ
- **CONCEIVED FOR PERFORMANCE** \succ
- RELIABLE \triangleright



TO WHERE FULSENS-GEL ENDED

FULSENS-GEL explored, tested and optimized functional nanomaterials, managing to transform this concept into a real solution.

A MULTISENSORY WEARABLE PATCH, CAPABLE OF MONITORING CERTAIN ESSENTIAL PARAMETERS IN REAL TIME

FL-PB-BASED NANOMATERIAL

WHAT WE HAVE ACHIEVED SO FAR IS JUST THE BEGINNING!

FL-BASED BIOSENSITIVE NANOMATERIAL

NOW IS A REALITY WITHIN REACH

A flexible, portable and efficient device that paves the way for a new era of advanced multi-sensing detection.

FULSENS-GEL INNOVATION

Design and development of a multiplex, flexible, wearable and portable patch, based on the new electroconductive Fullerenol-Hydrogel material functionalized with specific bioreceptors, enzymes/aptamers for the simultaneous, sensitive and selective detection of clinically important analytes (glucose, lactate, cortisol, hydrogen peroxide, chloride ions and pH) from non-invasive biological fluids (sweat).

- Development of a new nanocomposite materials with tunable network structure, active surface and improved electrochemical, mechanical and optical properties, by combination of elastic, resistant and flexible Hydrogels with functionalized Fullerenol (FL)based nanomaterials;
- Development of innovative bio-sensitive nanomaterials by incorporation of specific bioreceptors into FL-conductive nanostructures;
- Development of highly sensitive, selective and reproducible electrochemical sensors based on FL-Hydrogel nanomaterials;
- Development of a multi-sensing electrochemical platform with unique characteristics and diverse functionalities for simultaneous detection of specific biomarkers (glucose, lactate, H₂O₂, etc);
- The multisensing platform was characterized and optimized for electrochemical detection of clinically relevant analytes, as well as for optical detection by electrochemiluminescence of cortisol using specific aptasensor.

THESE FLEXIBLE AND PORTABLE MULTISENSORY BIOANALYTICAL PLATFORMS CAN BE USED FOR DETECTION OF A NUMBER OF OTHER IMPORTANT COMPOUNDS IN FOOD, ENVIRONMENT OR OF CLINICAL IMPORTANCE, SUCH AS DRUG RESIDUES, HORMONES, PESTICIDES, etc., ENABLING THE CONTROL AND MONITORING OF QUALITY OF LIFE

IMPACT AND RELEVANCE

FULSENS-GEL PROJECT SIGNIFICANTLY CONTRIBUTES TO IMPROVING THE QUALITY OF LIFE AND ADVANCING FUNCTIONAL MATERIALS FOR DETECTION APPLICATIONS, OFFERING INNOVATIVE SOLUTIONS TO CURRENT SCIENTIFIC AND SOCIO-ECONOMIC CHALLENGES.

The major impact of the FULSENS-GEL project is the development of an innovative nanocomposite material based on the combination of elastic, resistant and flexible hydrogels with functionalized Fullerenol (FL) nanomaterial, obtaining new conductive network structures, with active surface and improved electrocatalytic, optical and mechanical properties.

SCIENTIFIC COMMUNITY

By incorporating **biomolecules/bioreceptors** into such conductive nanostructures, unique characteristics and diverse functionalities were obtained, which can be exploited for different very promising application areas, such as:

- wearable and flexible sensors;
- D point-of-care sensors for clinical diagnosis;
- food quality control
- environmental monitoring;
- □ human-machine interfaces and smart sensors,
- $\hfill\square$ nanomaterials with self-regeneration/adhesive properties

THE EU'S RESEARCH POTENTIAL

Stimulating international collaboration, knowledge exchange, training, etc.

INDUSTRY

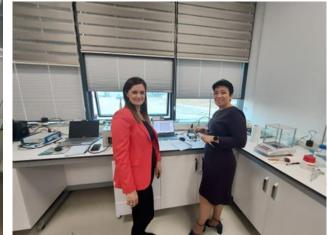
By producing and exploiting new flexible and portable bioelectronics.

SOCIETY

Developing bioelectronic devices containing such new nanomaterials offers the possibility of rapid, real-time monitoring of health conditions, food quality and detection of contaminants/pathogens, thus increasing the quality of life.

🎯 M-ERA.NET

WORKING VISITS



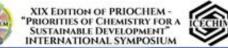
INTELLECTUAL PROPERTY and DISSEMINATION

PATENT APPLICATIONS

- A/00687-12.11.2024 Procedure for realization of a multisensitive platform based on innovative nanomaterials for monitoring of clinically relevant biomarkers ICECHIM
- A/00732–22.11.2024 Portable measuring tool for simultaneous electrochemical detection of lactate and glucose from sweat CHIMGRUP

WORKSHOPS

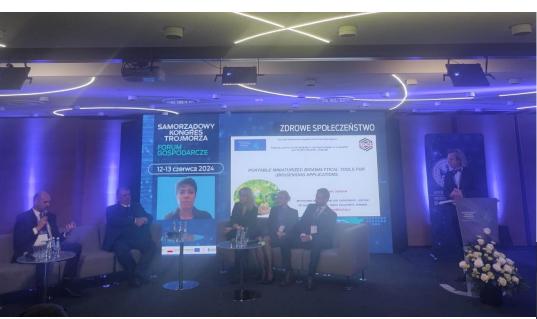
- Portable Miniaturized Opto-Electrochemical Systems for In-Field Measurements, Ana-Maria Gurban, October 11th, 2023, Bucharest Romania
 Organized by Coordinator ICECHIM.
- New challenges in the pharmaceutical field, Mariana Constantin, Titu Maiorescu University, November 22th, 2024, Bucharest, Romania.
 ROUND TABLE
- Portable miniaturized bioanalytical tools for (bio)sensing applications Ana-Maria Gurban Invited speaker at 4th Local Government
 Congress of the Three Seas Regions, June 12-13th, 2024, Lublin, Poland


SEMINAR

Biotechnological and biosensing approaches for the development of innovative solutions with applications in agriculture, food and environmental fields, Ana-Maria Gurban, Necmettin Erbakan University, BITAM Center, November 06-07th, 2023, Konya, Turkey.

INTERNATIONAL SCIENTIFIC EVENTS – 20 participations (7 oral communications)

WORKSHOPS - SEMINARS - ROUND TABLES


M-ERA.NET

Portable Miniaturized Opto-Electrochemical Systems for In-Field Measurements Speaker Ph.D. Chem. Ana-Maria Gurban 11 A.M. -12 P.M., OCTOBER 117, 2023 room 2 / Roor 1, ICECHIM Bucharest

This workshop addresses the need for portable, cost-effective, in-field pollutant/real-time health/food quality monitoring, and pathogen detection. Miniaturized opto-electrochemical bioanalytical tools using advanced nanomaterials offer diverse functionalities: wearable sensors for diagnostics, environmental monitoring, flexible energy storage, human-machine interfaces, and more.

Target audience electronic manufacturers, clinics, agriculture companies, education, and R&D.

REGISTRATIONS ana-maria.gurban@icechim.ro +40 213 153299/144; +40 752 290721

PUBLICATIONS

- Kurbanoglu S., Can Cevher Ş., Gurban A-M, Doni M., Soylemez S. Conjugated Polymers in Enzyme-based Electrochemical Biosensors, Advances in Materials Science Research, 2022, Vol 58, Chapter 1, p 1-48, Nova Science Publisher ISBN: 979-8-88697-488-1; ISSN: 2159-1997; <u>https://doi.org/10.52305/SREW6529</u>
- Image: Image:
- Marin M.M.; et. al, [†] lanchis R. Novel nanocomposite hydrogels based on crosslinked microbial polysaccharide as potential bioactive wound dressings. Materials 2023, 16, 982. <u>https://doi.org/10.3390/ma16030982</u>
- Zamfir L-G, Răut I., Constantin M., Corneli N.O., Firincă C., Jecu ML, Epure P, Nistor CL, Doni M, Gurban AM* Assessment of biogenic amines produced by microorganisms as food spoilage indicators by sensitive detection using portable opto-electrochemical tools based on biosensors, Food Control 2025, 172, 111161, <u>https://doi.org/10.1016/j.foodcont.2025.111161</u>
- Soylemez, S., Kurbanoglu, S., Kuralay, F., Nanoscale Physics of Electrochemistry, Elsevier, Biophysics at the Nanoscale, 2024, 43-71, <u>https://doi.org/10.1016/B978-0-443-15359-4.00006-1</u>
- Epure P*., Mitrea M., Gurban AM. (2023). Lactate Optical Detection Setup Used for Preventive Care. In: Auer, M.E., Langmann, R., Tsiatsos, T. (eds) Open Science in Engineering. REV 2023. Lecture Notes in Networks and Systems, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-031-42467-0_68
- Zamfir L.-G., Epure P., Mitrea M., Gîfu I.C., Răut I., Constantin M., Firincă C., Jecu L., Trică B., Doni M., Gurban A.-M., Wearable multisensing patch based on nano-composites for clinical biomarkers monitoring from sweat, Polymers (in prep)
- Gîfu I C, Nistor C. L., Petcu C., Alexandrescu E., Doni M., Zamfir L.-G., Gurban A.-M., Natural polysaccharides- based hydrogels a versatile tool for biomedical engineering development, Polysaccharides (in prep).

INTERNATIONAL INVENTION EXPOSITIONS AND CONFERENCES	TITLE OF PRESENTATION AWARDED	MEDAL/ AWARD	🔅 M-ER
KIDE2024 - Kaohsiung International Invention and Design EXPO (KIDE) 2024, Kaohsiung Exhibition Center (KEC), December 5-7, 2024, Qianzhen District, Kaohsiung, TAIWAN	Procedure for realization of a miniaturized electrochemical multisensing platform based on nanocomposites and enzymatic bioreceptors for the monitoring of clinically relevant biomarkers	GOLD	
ITE2024 - International Invention and Trade Expo London, Kingston University, September 24-25, London, GREAT BRITAIN	Procedure for manufacturing of a miniaturized nanocomposite based multisensing platform for the monitoring of clinically relevant biomarkers	GOLD	
EURO-POLITEHNICUS2024 - International Salon of Innovation and Inventions, November 22-24Th, 2024, Bucharest, Romania	Procedure for manufacturing of a miniaturized nanocomposite based multisensing platform for the monitoring of clinically relevant biomarkers	GOLD	
iCAN 2023 - The 8th International Invention Innovation Competition in Canada, August 26th, 2023, Toronto, CANADA	Innovative fullerenol - hydrogels based nanomaterials for health diagnostic and care applications - FULSENS-GEL	GOLD	
INOVA2024 - 48th International Invention Show –October 16- 19th, 2024, Zagreb, CROATIA	Procedure for manufacturing of a miniaturized nanocomposite based multisensing platform for the monitoring of clinically relevant biomarkers	SILVER	
INOVA2024 - 48th International Invention Show, October 16- 19th, 2024, Zagreb, CROATIA	Innovative fullerenol-hydrogels based nanomaterials for health diagnostic and care applications - FULSENS-GEL	SILVER	
EURO-POLITEHNICUS2024 - International Salon of Innovation and Inventions, November 22-24, 2024, Bucharest, ROMANIA	Procedure for manufacturing of a miniaturized nanocomposite based multisensing platform for the monitoring of clinically relevant biomarkers	Diploma of Excellence awarded by University of Polytechnic, Timisoara, Romania	
EURO-POLITEHNICUS2024 - International Salon of Innovation and Inventions, November 22-24, 2024, Bucharest, Romania	Procedure for manufacturing of a miniaturized nanocomposite based multisensing platform for the monitoring of clinically relevant biomarkers	Diploma of Excellence awarded by the Justin Capra Association, Romania	
BIOSENSORS 2024, 6th International Congress on Biosensors, September 05-07, 2024, Konya, TURKEY	Multisensing Portable Tool Based On Novel Fullerenol Derivatives For Health Status Monitoring	The 2nd Best Poster Presentation Award	
PRIOCHEM XX - The International Symposium "PRIORITIES OF CHEMISTRY FOR A SUSTAINABLE DEVELOPMENT", October 16- 18th, 2024, Bucharest, ROMANIA	Wearable multi-sensing patch based on SWCNT-PtNPs nanocomposite for clinical biomarkers monitoring from sweat	The award for recognizing the outstanding presentation given at the symposium	
PRIOCHEM XIX - The International Symposium "PRIORITIES OF CHEMISTRY FOR A SUSTAINABLE DEVELOPMENT", October 16- 18th, 2024, Bucharest, ROMANIA	Design and development of MIP based electrochemical sensor for cortisol detection	PRIOCHEM2023 AWARD	
ICan 2024 - The 9th of the International Invention Innovation Competition in Canada,. 24 august 2024, Toronto, CANADA	Procedure for realization of electrochemical biosensors based on nanomaterials for biogenic amines determination	GOLD	
innoCenta 2024 - The International Exhibition of Innovation and Technological Transfer, November 7th, 20024, Timisoara, ROMANIA	Procedure for realization of electrochemical biosensors based on nanomaterials for biogenic amines determination	GOLD	
EUROINVENT2024 - The 16th Edition of the European Exhibition of Creativity and Innovation, June 6-8th, 2024, Iași, ROMANIA	Procedure for realization of electrochemical biosensors based on nanomaterials for biogenic amines determination	GOLD	
KIDE2024 - Kaohsiung International Invention and Design EXPO KIDE) 2024, Kaohsiung Exhibition Center (KEC), December 5-7, 2024, Qianzhen District, Kaohsiung, TAIWAN	Procedure for realization of electrochemical biosensors based on nanomaterials for biogenic amines determination	GOLD	

2024

inova

for the work entitled:

DESIGN AND DEVELOPMENT OF MIP BASED ELECTROCHEMICAL SENSOR FOR CORTISOL DETECTION

Authors: Maria-Lorena JINGA, Lucian-Gabriel ZAMFIR, Petru EPURE, Daniel PREDA, Mariana CONSTANTIN, Iuliana RAUT, Maria-Luiza JECU, Mihaela DONI, Iulia Gabriela DAVID, Ana-Maria GURBAN

President of the Scientific Committee General Manager Dr. Habil. Radu Claudiu FIERASCU Dr. Biochem. Mihaela DONI

National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM Bucharest

OPEN-ACCESS SUPORT VOUCHER

100% Discount Voucher For publication in

POLYMERS (MDPI)

6

Ģ

6

COLLABORATIONS - NEW CONSORTIA

- ERANET-COFUND2024 project12519 Innovative spiro conjugated polymers-mxenes nanostructures for monitoring and control of human-microbial-related pollutants in eu aquatic ecosystem – Proposed for funding (failed due to poor partner financing) (Turkey-Romania-Poland-Spain);
- ERANET-COFUND2023 project11275 Engineered upconversion nanoparticles-conjugated polymers for precision medicine (Turkey-Romania-Spain)
- ERA4HEALTHNANO-252-2024 Customized MXene nanoStructures for Cutting-Edge Research and Optimization in Colorectal Cancer Diagnostic NanoSCORP (Poland-Romania-Portugal-Romanian SME)
- ERA4HEALTHNANO-265-2024 Innovative electrochemical point-of-care device for smart intraoperative evaluation of surgical margins in sarcome and bone metastasis – PoCMARGINS (Italy-Spain-Romania-Spain Hospital – Italy Hospital)
- OC-2022-1-25999-2022 Wearable nanobiosensors for continuous monitoring: From laboratory to real-life applications WEARSENSE COST (18 countries 40 participants)
- 24UA19001-2024-NEÜ, International Research Project Continuous Development and Application of Sensors for Wearable Technologies for Simultaneous Detection of Some Important Biomarkers (Turkey – Romania)
- PN-IV-P2-2.1-TE-2023-1281- Innovative MXene-peptides for electrochemical miniaturized platforms dedicated to tumor biomarker detection -MXEPEPMIN -Romania young research team (Founded)

YOUNGS INVOLVED **EMPLOYED – 1 Master student** YOUNGS INVOLVED – 1 Master, 4 PhD, 3 Post-docs **MENTORING – 6** students and 4 high-school students

SPECTRAMAX ID3 MULTI-MODE MICROPI ATE DETECTION PLATFORM

PURCHASED EQUIPMENT IN THE CONSORTIUM

PROTOTYPING PRINTER AMPEROMETRIC DETECTOR

POTENTIOSTATE/

M-ERA.NET

TECHNICAL

OVERCOMING CHALLENGES

□ PROJECT DURATION - SHORTENING THE RUNNING PERIOD from 36 MONTH to 30 □ THE GAP IN FUNDING AND STARTING THE ACTIVITIES BETWEEN PARTNERS

- > FULLERENOL-synthesis nanomaterial agglomeration inducing sensitivity limitations
- > HYDROGEL synthesis Crosslinking degree and polymerization conditions of hydrogel
- Bioreceptors-FL based biosensors different immobilization strategies for the same platform
- Manufacturing flexible screen-printed multi-sensing electrodes made in 2 steps (layers unstable, detaching);
- WEARABLE and PORTABLE set-up working simultaneously with multiple channels and implementing three different detection techniques (voltammetry, amperometry, EIS) on a multi-channel structure and wearable hardware is really challenging.
- > Dimensional correlation of the multi-sensory platform and the wearable patch with connectors and adapters
- Design and development of microfluidic layer correlation between the hydrophobic substrate of the SPEs and hydrophilic layer for sweat collection.
- > Reproducibility and long-term stability of the developed biosensors.
 - MAJOR CHALLENGE the loss of the key person within the project affected the team dynamics and tested the resources to maintain the continuity of the project.

M-FRA.NET

PERSPECTIVES FOR THE FUTURE DEVELOPMENT OF OPTO-ELECTROCHEMICAL SYSTEMS

- New nanomaterials with enhanced opto-electrochemical properties are still emerging for innovative applications, such as catalysts, electronics, solar panels, batteries and biomedical applications, including diagnostic devices and tumor therapies;
- Miniaturized opto-electrochemical bioanalytical tools using advanced nanomaterials offer diverse functionalities: wearable sensors for diagnostics, environmental monitoring, flexible energy storage, human-machine interfaces, and more.
- Complementary technologies Integration with other technologies, such as the Internet of Things (IoT), artificial intelligence (AI), and cloud technology, will enhance the functionality and connectivity of opto-electrochemical systems.
- Durability and robustness need to be developed to be durable and resistant to harsh environmental conditions or wear and tear over time.
- Cost reduction the production and implementation costs of these systems will need to decrease to make them more affordable and to expand their use in a wider range of applications and in different regions of the world.
- Medical applicability the development of portable opto-electrochemical technologies for medical diagnosis and health monitoring is an important direction for the future. These devices can contribute to personalized healthcare and more effective management of chronic diseases.

Future development of portable opto-electrochemical systems focuses on increasing the performance, portability and versatility of these technologies, enabling them to address a wide range of challenges and applications in areas such as health, security, environment and industry.

ACKNOWLEDGEMENTS

Mihaela DONI

Lucian-Gabriel ZAMFIR

Raluca IANCHIS

Iuliana Răut

Mariana Constantin

Maria Lorena Jinga

Cristina Firincă

Ioana-Cătălina Gîfu

Luiza Jecu

Cristian Petcu

Cristina Nistor

Bogdan Trică

Elvira Alexandrescu Petru Epure Mihai Mitrea UEFISCDI **Domnica COTET**

Adriana NITU

Europear Commission

E AGENCY FOR HIGHER EDUCATION, RESEARCH, DEVELOPMENT

Dilek SOYLER

Dilara YENITERZI

Project FULSENS-GEL was selected in the Joint Transnational Cofund Call 2021 of M-ERA.NET 3, which is an EU-funded network of about 49 funding organizations (Horizon 2020 grant agreement No 958174). The project was funded by:

The Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI – ROMANIA. *

M-era.Net

- The Scientific and Technological Research Council of Turkey-TÜBİTAK, TURKEY. *
- Instituto de Desarrollo Económico del Principado de Asturias IDEPA, SPAIN. *

Pablo Fanjul BOLADO María Begoña González GARCIA

