Tellurium-Free Thermoelectric Modules by Interface Engineering

K. Nielsch¹, M. Knez², F. Bureš³, V. Pacheco⁴, and H. Yin⁵

THERMOS

State of the art

Worldwide more than 60% of the generated primary energy is lost as waste heat. (Waste-)heat to electricity thermoelectric (TE) energy conversion, based on Seebeck effect, has several advantages in relation to traditional heat recovery technologies i.e.

- No moving parts Maintenance free Noiseless Compact
- Lighter and less bulky than ORC machines or steam turbines

Moreover, TE modules can also be used for cooling down by using the Peltier effect. However, commercial Bi₂Te₃ modules display low efficiency (< 4 %), contain scarce and toxic

elements (i.e. Tellurium), are expensive, and they are hand-made mainly in China or Russia.

Impact and potential benefits

THERMOS develops modules by material interface engineering and module encapsulation using innovative powder-Atomic Layer Deposition (pALD)

- usage of sustainable materials (non-toxic elements, low costs, large natural abundance) outperform and replace conventional Bi₂Te₃ modules
- enable new market opportunities • foundations for patent application and production of a new generation of TE modules in Europe reach TRL 6
- support the partner SME Company TEGnology to enhance their portfolio of TE modules

Main objective:

Development of highly efficient TE modules by interface engineering for entering into the growing markets:

On-spot cooling • Telecommunication • Biomedical • High-temperature sensors • Internet of Things • Waste heat recycling

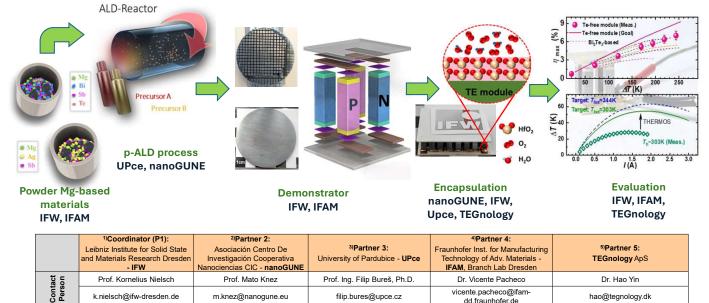
Specific objectives

Funding Organisation

SACHSEN

Dr. Gabriele Süptitz

- 1. Conversion efficiency of > 8.5 %
- 2. Cooling effect of > 60°C in TE cooling.
- 3. Enhancing the reliability via ALD encapsulation. Minimum 5000 heating-cooling cycles.
- 4. Scaling up material synthesis (g to kg-scale), increase the number of n-p pairs in TE modules (n>16), production of series of TE modules (m=50).


5. Testing the TE modules in specific applications and environments (by an industrial partner) and evaluating the whole life cycle.

AGENCIA ESTATAL DE INVESTIGACI

Beatriz Gómez Miguel

Jorge Sotelo Santos

key findings and contribution of consortium partners

Δ

R

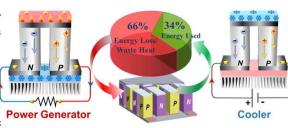
Katerina Volfova

Č

dd.fraunhofer.de

Dr. Gabriele Süptitz

FÜR WIS SCHAFT SACHSEN


Innovation Fund Denmark

Jens Peter Vittrup

