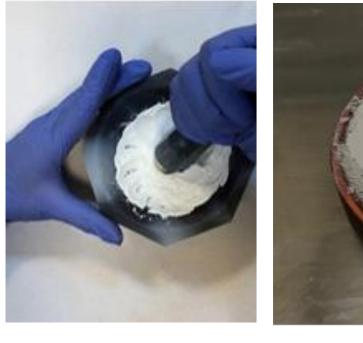


Abstract

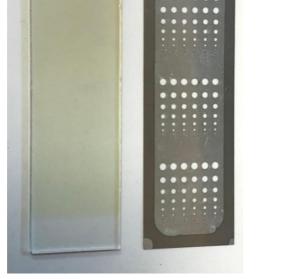
This study advances all-solid-state lithium-ion batteries (ASSLIBs) by focusing on the deposition of LiCoO₂ (LCO) as a cathode and Li₇La₃Zr₂O₁₂ (LLZO) as a solid electrolyte. A dual-deposition system combining RF magnetron sputtering and thermal evaporation enables the fabrication of uniform, scalable thin films for large-area applications. The project optimizes growth parameters to achieve high energy density (~200 mAh/g) and cycle stability. Special attention is given to the LCO-LLZO interface, where atomic layer deposition (ALD) introduces a nano-layered buffer film to improve adhesion and charge transfer. Extensive characterization techniques, including SEM, XRD, Raman spectroscopy, XPS, and electrochemical measurements, evaluate the structural and electrochemical properties of the films. The project aims to achieve ASSLIBs with over 200 mAh/g capacity and 80% retention after extended cycling, contributing to the development of high-capacity, durable batteries for next-generation energy storage applications.

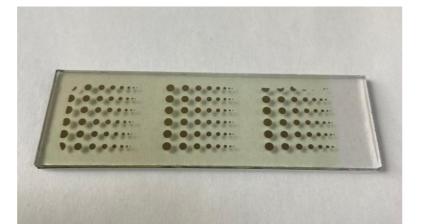


- LCO cathode serves as the material for lithium-ion storage.

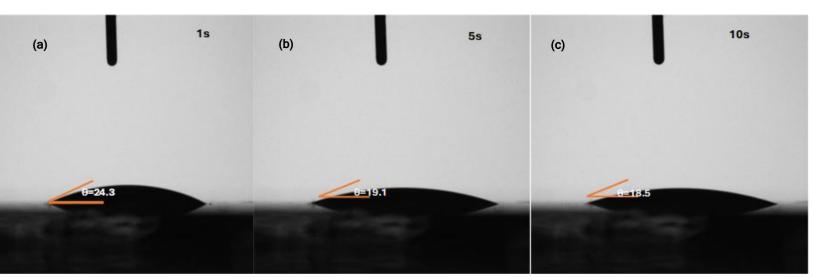
LLZO

The LLZO powder was mixed by grinding in an agate mortar and then pressed into a pellet.


Plasma during deposition of LLZO


LLZO thin film deposited on 15cm x 15cm glass substrate

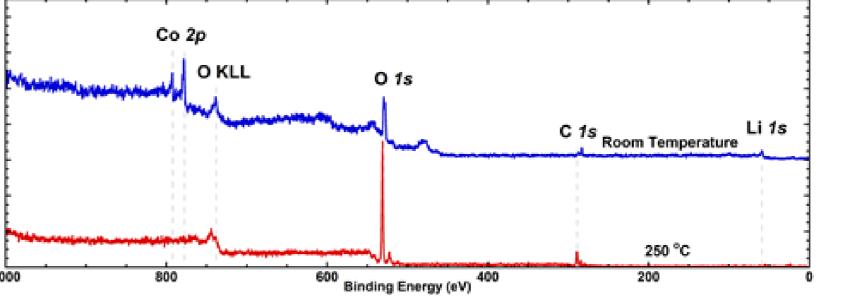
LLZO thin film deposited using 83 W RF Power for 60 minutes



Sample of LLZO grown on ITO coated (contact layer) substrate and the mask

Aluminum contacts of various diameters applied on a SLG/LLZO thin film

LiCoO₂ * Co₃O₄ # LiCoO (a) Target 350 °C 250 200 20 (Degree) XRD and Raman results of LCO target and LCO thin films Co 2p O KLL 0 1s C 1s Li 1s Room Temperature 250 °C 600 Binding Energy (eV) 400 200



Contact angle of Ti-LCO sample (a) θ =24.3° (b) θ =19.1° (c) θ =18.5°

RT	200 °C	~ 250 °C	300 °C	350
W sot del mag W0 pressure 3/3/2025 — 500 bits 5500 WI 25 ETD 200 000 x \$0.2 mm 2/0.7 Fp 1152:00 AM DTEMAM	H/ split det mag 100 pressure 3/3/2005	W log t mag M0 mesure 1/1/0015 500 mit 500 MI 32.5 ETE 200 000 32 are 32.0 mit 100 mit 100 mit	W [92 60 mg] 100 pressver 3/3/0/35	H/i quot def mag W0 pressure 3/3/2025

SEM images of LCO thin films grown at different substrate temperatures

Metal Oxide Buffer Layer

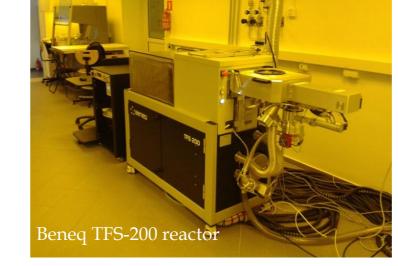
XPS survey spectra of LCO thin films grown at room temperature and 250 °C

• The XPS analysis of the LCO thin film revealed the observation of key peaks corresponding to Li 1s, Co 2p, O 1s, and C 1s.

Target Preparation

Characterization

Optimization studies for LLZO are ongoing.

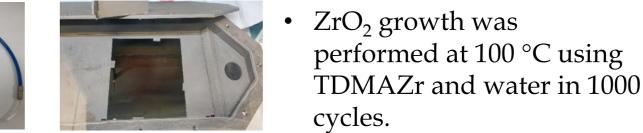

Conclusion

- Ti and LCO layers grown on SLG substrates successfully.
- In-situ heat treatment significantly improved phase purity and crystallinity for LCO.
- Enhanced crystallinity after heat treatment at 250°C.
- Revealed notable changes in chemical states and the emergence of secondary phases.
- LLZO will be grown as a solid electrolyte layer.
- The parameters for optimizing the growth of the LLZO solid electrolyte layer are still being studied.

Acknowledgement

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with project number 122N410 under MERANET program.

The authors would like to acknowledge the facilities of Research and Application Center for Quantum Technologies (RACQUT) of IZTECH.



Coated glass in this SLG/Ti/LCO sample in the reaction chamber vacuum case

• Al₂O₃ and ZrO₂ layers were optimized for $< \pm 2\%$ homogenity.

The best Al_2O_3 growth was achieved at 150 °C with a 1:3 TMA-O₂ pulse ratio.

cycles.

ultrathin ZrO_2/Al_2O_3 ALD of ALD of nanolaminates ultrathin ZrO₂ ultrathin Al₂O₃ ZrO_2 Repeated up to 10 x Al₂O₃ ZrO_2 Al₂O₂ SUBSTRATE SUBSTRATE SUBSTRATE

Controlled thickness of the ALD layers nominally in the range of 2-20 nm

ALD of

ALD precursors: for ALD of Al₂O₃ - TMAl, H₂O and TMAl, O₃ for ALD of ZrO_2 - TEMAZr, H_2O

References

Ulusoy, S., Gulen, S., Aygun, G., Ozyuzer, L. & Ozdemir, M. (2018). Characterization of thin film Li_{0.5}La_{0.5}Ti_{1-x}Al_xO₃ electrolyte for all-solid-state Li-ion batteries. Solid State Ionics, 324, 226-232.

Zhang, J., Wang, P., Bai, P., Wan, H., Liu, S., Hou, S., Pu, X., Xia, J., Zhang, W., Wang, Z., Nan, B., Zhang, X., Xu, J. & Wang, C. (2021). Interfacial Design for a 4.6 V High-Voltage Single-Crystalline LiCoO₂ Cathode. Advanced Materials, 34. Wan, H., Wang, Z., Zhang, W., He, X. & Wang, C. (2023). Interface design for all-solid-state lithium batteries. Nature, 623, 739-744.