

HTWK

Space (Satellite

Robotics

PRINTCAP

Intelligent green

Next Generation of 3D Printed Structural Supercapacitors (PRINTCAP)

NAWA TECHNOLOGIES

M. S. Bogar^{a,b}, R. Seidel-Greiff^{a,b}, T. Behnisch^{a,b}, P. Bertram^{b,c}, I. Kuznik^{b,c}, I. Kruppke^{b,c}, D. P. Hedayati^d, R. Böhm^d, G. Foyer^e, G. Pognon^e, B. Karakashov^f, T. Goislard^f, Ch. Cherif^{b,c}, N. Modler^a ^a Institute of Lightweight Engineering and Polymer Technology (ILK), Technical University of Dresden, Dresden, Germany, ^b Research Center Carbon Fibers Saxony (RCCF), Technical University of Dresden, Dresden, Germany, ^c Institute of Textile Machinery and High Performance Material Technology (ITM), Technical University of Dresden, Dresden, Germany, ^d Faculty of Engineering, Leipzig University of Applied Sciences, Leipzig, Germany, ^e Thales Research and Technology, Paris, France, ^fNAWA Technologies, Rousset, France

Motivation

Lightweight energy storage is essential for electromobility and aerospace applications.

THALES

- Conventional batteries are heavy and limit design flexibility.
- Structural Supercapacitors (SSCs) combine mechanical strength with energy storage, reducing weight by **up to 27%**.
- High energy rates make SSCs ideal for highly dynamic systems.
- The PRINTCAP project develops SSC solutions using additive manufacturing (AM) and **multifunctional composites** for next-generation applications.

Objectives

- Material Development:
 - Carbon fibers functionalized with vertically aligned carbon nanotubes (VACNT) for high surface area.
 - Solid-state high-ionic-conductivity electrolytes for mechanical robustness.
- Manufacturing Approach:
 - **Endless-fiber 3D printing** to create SSCs with tailored geometries.
 - Use of multiscale multiphysics modeling to optimize and capture the interaction between mechanical deformation, filament arrangement and energy storage behavior.

Results & Discussion

M-ERA.NET

Material development: Micro-scale pore network in porous CF visualized using SEM and 3D X-ray microscopy.

A

Aircraft

Drones

CF: Electrochemical, Electrical & Mechanical Tests

Public transport

Characterization routine

1. Porosity and Structural Characterization

- X-ray microscopy to analyze pore structure.
- SEM imaging to assess VACNT-modified carbon fibers.

2. Electrochemical Testing

- Fiber electrochemical tests to measure current density.
- Cyclic voltammetry analyses of PVA gel electrolyte

3. Mechanical Testing

- Tensile tests to evaluate fiber strength.
- PET-G-CF layer characterization for encapsulation and reinforcement.
- 4. Multiscale Multiphysics Modeling for SSC
 - Simulates mechanical-electrostatic coupling.
 - Develops a predictive model for SSC behavior. Optimizing design parameters and filament arrangement for SSC capacitance.

Reinforcement layer: Mechanical and DIC results \succ Tensile strength: 58 MPa, Elongation at break: 4.5. >DIC camera results: 9% elongation at the center of the tensile sample

Modeling framework for SSC

- ➤Y-extended construction achieves higher capacitance (F/m).
- >The screening effect must be considered in design.
- Surface porosity enhances charge storage.
- Proof of Concept: FEA Modeling

- 5. Modeling and Simulation
 - Finite Element Analysis (FEA) to determine reinforcement layer thickness for drone applications as a proof of concept.

Conclusion

- > Closed and isolated pores do not affect charge storage, while surface porosity (high surface area medium) enhances it—explaining why VACNTs significantly boost capacitance.
- \succ A thin, densely packed CF is the optimal design for SSCs.
- \geq PRINTCAP successfully demonstrates TRL 1 \rightarrow 3 advancement in SSC technology.
- \geq 30.14 g of VACNT CF/PVA gel SSC delivers the energy for a 15-second hover at 30 cm.

Contact

Mohsen Sadeghi Bogar, M.Sc. E-Mail: Mohsen.Sadeghi.bogar@tu-dresden.de Phone: +49 3514 63-43435 Institute of Lightweight Engineering and Polymer Technology (ILK) Holbeinstraße 3, 01307 Dresden, Germany

Iris Kruppke, Dr.-Ing. E-Mail: iris.kruppke@tu-dresden.de Phone: +49 3514 63-44031 Institute of Textile Machinery and High Performance Material Technology (ITM) Hohe Str. 6, 01069 Dresden, Germany

Acknowledgement

The authors would like to thank for funding the PrintCap project (1006345980387), co-financed with tax revenues based on the budget approved by the Saxon State Parliament.

