

Bio-sourced Alternatives for Lithium-Silicon Anodes (BALSA)

Behnam Chameh^{1,+}, Linda Ager-Wick Ellingsen², Geoff Fisher³, Keith Gourlay³, Haiman Hu⁴, Xiaoyan Ji⁴, Nathiya Kalidas¹, Fadoua Laasri⁵, Samson Yuxiu Lai^{6,*}, Vesa-Pekka Lehto¹, Jiajia Li⁴, Anna Motta⁷, Amel Mouda⁵, Theresa Nguyen⁶, Andrea Marcela Restrepo⁵, Sanaz Safa⁵, Rebecca Jayne Thorne², Tommi Tiihonen¹, Xiuyun Zhao¹

¹Department of Technical Physics, University of Eastern Finland, FI-70210 Kuopio, Finland; ²Department of Technology and Innovation, Institute of Transport Economics, Oslo, Norway; ³Performance Biofilaments Inc., Vancouver, Canada, ⁴Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden, ⁵Centre d'Etude de Procedes Chimqiue du Quebec (CEPROCQ), Montreal, Canada, ⁶Department of Battery Technology, Institute for Energy Technology, Kjeller, Norway, ⁷Talga Group, Ltd., Cambridge, United Kingdom; * presenting author e-mail: <u>samson.lai@ife.no</u>; [†]Author names are presented in alphabetical order

Solid waste treatment

50

0

100,


Time (h)

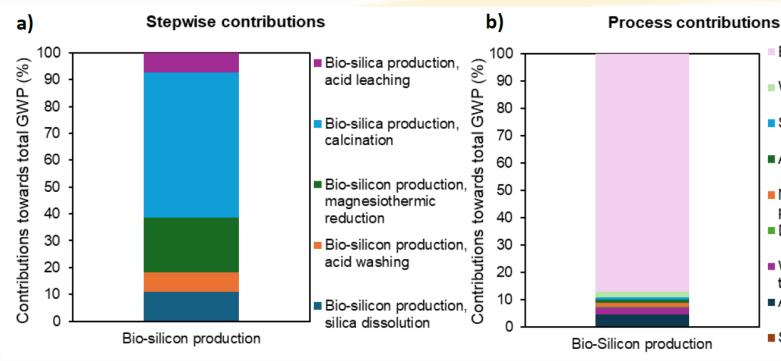
150

WP1 – Bio-sourced porous Si

Barley husk is acid-washed and pyrolyzed to obtain porous SiO₂. Magnesiothermic reduction converts to Si, preserving meso-/microporous phytolith structure. Thermal carbonization modifies and protects the surface.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958174 (M-ERA.NET 3) and is supported by the Research Council of Norway NANO2021 programme under Project No. 337634, Sweden's Innovation Agency (Vinnova) ref. 2022-00890, PRIMA Québec, and the Research Council of Finland.



WP5 - Life cycle assessment

electrode

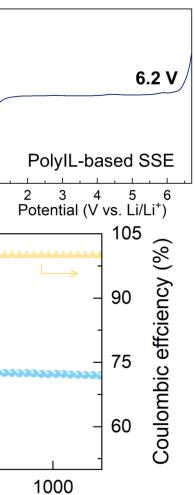
Lab-scale, cradle-to-gate analysis identified calcination of porous Si as the most energy intensive step. Barley husk is free, but processing adds high environmental impact, which are strongly affected by low yield and small scale. Prospective LCA will simulate various production scenarios and projecting to industrial-scale to 2040.

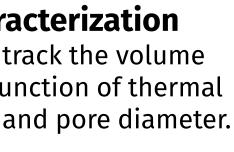
Poly(ionic liquid) (PIL) scaffold

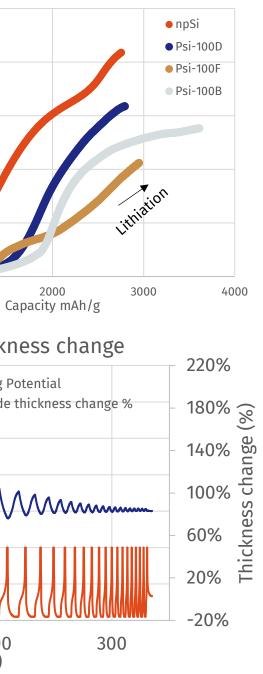
CÉPR CQ WP3 – Bio-based electrolyte WP2 – Bio-based, free-standing Si/CNF PERFORMANCE Bio**Filaments** From PEO-based SSE to PolyIL-based SSE or Centre d'études des procédés niques du Québec SSE with SiO₂ fillers, the ionic conductivity, Nanofibrillated cellulose (NFC) is converted to electrochemical stability window, and cycling carbon nanofiber (CNF) to function as conductive life of Li//LFP cells gradually increased, additive. Dispersing with Si, supercritical CO2 successfully meeting the project objectives. drying, and pyrolysis to obtain aerogel. Aerogel process adapted to electrode casting. The anode 3.44 -0.25 NFC dispersion Pre-pyrolysis さ0.00 Pyrolyzed and |ਹ_{-0.25} ' 0.76 0.59 casted anode **THE BALSA PROJECT CONCEPT** 0.27 BALSA project aims to develop a bio-based Li-ion battery (LIB) anode PLSI@5C Bio-based PolyIL F-QSCE@30 **PEO-based** and quasi-solid-state electrolyte, in which the active and supporting 250 ິ ເ_ີ 200 materials are derived from biological sources, i.e., from plants. (mAh 0.5 C Capacity 100 50 Li||LFP (2.5-3.8 V) 500 750 250 **BioBattery** Cycle number WP4 – Assembly, prototyping, characterization Dilatometry study has been employed to track the volume Si/CNFs expansion of porous Si vs. nano-Si, as a function of thermal anode annealing, affecting specific surface area and pore diameter. 250.00% Electrolyte Balsa_01 discharge_capacity 200.00% Commercial LFP anode 150.00% 100.00% 50.00% 0.00% 1000 20 60 80 Cycle index pSi-99D thickness change Nano-Si (non-porous) thickness change Electricity mix 3.5 3.5 220% ----- Working Potential Water production — Electrode thickness change % — Electrode thickness change % 180% 🛞 Solvent production M Potential vs Li(V) 00% 001 2.5 Acid production 100% Material/chemical 1.5 1.5 Thickness production 60% Direct emissions Wastewater 20% 0.5 0.5 treatment Acid waste treatment

-20%

200


100


200


Time (h)

0

