GRadient- and multi-matErial procEssing of Next-generation solid-state-BAT teries using direct material processing **Fraunhofer GREEN-BAT**

UNIVERSITY OF TURKU

Vinay Gidla¹, Arman Hasani¹, Chinmayee Nayak¹, Vasanth Gopal², Behnam Chameh³, Vesa-Pekka Lehto³, Josh Thomas⁴, Henrik Eriksson⁴, Mirko Riede⁵, Franz Marquardt⁵, Shrikant Joshi², Ashish Ganvir^{1*}

Advanced Battery Materials

¹ University of Turku, Turku, Finland ² University West, Trollhättan, Sweden ³University of Eastern Finland, Kuopio, Finland

⁴ LiFeSiZE (LZ), Uppsala, Sweden ⁵ Fraunhofer IWS, Dresden, Germany

- More efficient energy storage system
- Can withstand higher temperatures

Poor contact

Multi step process

Low production rate

• Size and shape limitation

High production rate

Excellent contact between electrodes

size and shape

Solid-Solid Interfacial Analysis for optimization and gaining

Battery Performance of our fabricated

Prof. Ashish Ganvir ashish.ganvir@utu.fi +358(0)504782729

The initial trial on depositing battery materials on Al foil sprayed through Low Power Plasma Spray